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a b s t r a c t 

The difference between age predicted using anatomical brain scans and chronological age, i.e., the brain-age 

delta, provides a proxy for atypical aging. Various data representations and machine learning (ML) algorithms 

have been used for brain-age estimation. However, how these choices compare on performance criteria important 

for real-world applications, such as; (1) within-dataset accuracy, (2) cross-dataset generalization, (3) test-retest 

reliability, and (4) longitudinal consistency, remains uncharacterized. We evaluated 128 workflows consisting of 

16 feature representations derived from gray matter (GM) images and eight ML algorithms with diverse inductive 

biases. Using four large neuroimaging databases covering the adult lifespan (total N = 2953, 18–88 years), we 

followed a systematic model selection procedure by sequentially applying stringent criteria. The 128 workflows 

showed a within-dataset mean absolute error (MAE) between 4.73–8.38 years, from which 32 broadly sampled 

workflows showed a cross-dataset MAE between 5.23–8.98 years. The test-retest reliability and longitudinal con- 

sistency of the top 10 workflows were comparable. The choice of feature representation and the ML algorithm 

both affected the performance. Specifically, voxel-wise feature spaces (smoothed and resampled), with and with- 

out principal components analysis, with non-linear and kernel-based ML algorithms performed well. Strikingly, 

the correlation of brain-age delta with behavioral measures disagreed between within-dataset and cross-dataset 

predictions. Application of the best-performing workflow on the ADNI sample showed a significantly higher brain- 

age delta in Alzheimer’s and mild cognitive impairment patients compared to healthy controls. However, in the 

presence of age bias, the delta estimates in the patients varied depending on the sample used for bias correction. 

Taken together, brain-age shows promise, but further evaluation and improvements are needed for its real-world 

application. 
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. Introduction 

Precision and preventive medicine, e.g., early detection of

lzheimer’s disease (AD), can benefit from individual-level quantifi-

ation of atypical aging. Machine learning (ML) approaches, together

ith large neuroimaging datasets can provide such individualized pre-

ictions. Indeed, ML algorithms can capture the multivariate pattern of

ge-related changes in the brain associated with healthy or typical aging

 Franke et al., 2010 ; Varikuti et al., 2018 ; Cole 2020 ; Beheshti et al.,

022 ; Hahn et al., 2022 ). Such a model can then be used to predict

ge, i.e., brain-age, from an unseen subject’s image. Being a normative

odel, a large deviation between the chronological and the predicted
✩ Data used in preparation of this article were obtained from the Alzheimer’s Dise

nvestigators within the ADNI contributed to the design and implementation of AD

eport. A complete listing of ADNI investigators can be found at: https://adni.loni.us
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ge is indicative of atypical aging. A higher positive difference between

he brain-age and chronological age, i.e., brain-age delta (which we refer

o simply as delta), indicates “older-appearing ” brains. As an indicator

f future risk of experiencing age-associated health issues, delta quan-

itatively relates to several age-related risk factors and general physi-

al health, such as weaker grip strength, poorer lung function, history

f stroke, greater frequency of alcohol intake, increased mortality risk

 Cole et al., 2018 ; Cole, 2020 ), and poorer cognitive functions such as

uid intelligence, processing speed, semantic verbal fluency, visual at-

ention, and cognitive flexibility ( Cole et al., 2018 ; Boyle et al., 2021 ;

ichard et al., 2018 ; Gaser et al., 2013 ; Cole et al., 2017 ). Overall, the

elta can potentially serve as an omnibus biomarker of brain integrity
ase Neuroimaging Initiative (ADNI) database ( adni.loni.usc.edu ). As such, the 

NI and/or provided data but did not participate in analysis or writing of this 
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u  
nd health if its reliability, given different ML workflow designs and

ther analyses, can be established. 

Studies have shown global and local gray matter (GM) volume

GMV) loss ( Good et al., 2001 ; Galluzzi et al., 2008 ; Giorgio et al.,

010 ) with aging and accelerated loss in neurodegenerative disorders

 Good et al., 2001 ; Karas et al., 2004 ; Fjell et al., 2014 ). This makes GMV

 clinically relevant candidate for the investigation of atypical aging via

rain-age estimation ( Franke et al., 2010 ; Cole et al., 2015 ). Brain-age

rediction models tend to perform better using GMV than white matter

olume (WMV) ( Cole et al., 2017 ; Monté-Rubio et al., 2018 ), making

MV a promising candidate for further investigation. Furthermore, by

educing the methodological and data-related variance in a model’s pre-

iction error, the delta can better reflect a biological signal related to

typical aging. 

A brain-age estimation workflow consists of a feature space and an

L algorithm, and several choices exist for each. For instance, voxel-

ise data with additional smoothing and/or resampling or parcel-wise

verages within a brain atlas can be used as features ( Varikuti et al.,

018 ; Eickhoff et al., 2021 ). Further dimensionality reduction meth-

ds such as principal components analysis (PCA) can improve the

bservations-to-features ratio and signal-to-noise ratio ( Franke et al.,

010 ; Franke et al., 2013 ; Gaser et al., 2013 ). One also needs to choose

rom a large pool of ML algorithms, such as relevance vector regres-

ion (RVR), and Gaussian process regression (GPR), many of which have

hown success in brain-age estimation. These choices are known to af-

ect performance ( Gutierrez Becker et al., 2018 ; Baecker et al., 2021 ;

e Lange et al., 2022 ). 

Studies using voxel-based morphometry (VBM)-derived GMV to pre-

ict brain-age have claimed prediction errors of ∼5–8 years in healthy

ndividuals (Table S1). However, it is difficult to compare these stud-

es as they differ in experimental setup and methodology, such as fea-

ure space used, ML algorithms, age range, and evaluation criteria. For

 brain-age estimation model to be used in real-world applications, it

ust perform well on several evaluation criteria; (1) a model should

eneralize well on new data from the training site as well as on data

rom novel sites, (2) estimated age must be reliable on repeated mea-

urements, and (3) it should also exhibit longitudinal consistency, i.e.,

he predicted age should be proportionally higher for later scans after

 longer duration, assuming no significant change in lifestyle or health-

elated interventions between the measurements. 

A critical aspect, especially for clinical application, is the com-

only reported negative correlation between delta and true age

 Beheshti et al., 2019 ; Smith et al., 2019 ; de Lange and Cole, 2020 ). This

ay result in spurious correlations between the delta and non-imaging

easures when chronological age is not accounted for ( Franke et al.,

013 ; Löwe et al., 2016 ). This age bias complicates or may even mislead

ownstream individualized decision-making. It can be mitigated using

ias correction models; usually, linear regression predicting brain-age

r delta using chronological age ( Le et al., 2018 ; Liang et al., 2019 ;

mith et al., 2019 ; de Lange et al., 2022 ). The data source (within or

ross-data) and size used to obtain bias correction models has substan-

ial impact on quality of the model. Taken together, there is a gap in

nderstanding the impact of the choices in designing brain-age work-

ows, and how they affect estimation and utility of individual-level

elta. 

To fill this gap, we systematically assessed 128 workflows consist-

ng of 16 feature spaces derived from GM images and eight ML algo-

ithms with diverse inductive biases. Using several large neuroimaging

atabases with a wide age range, we first evaluated these workflows

or their within-dataset and cross-dataset performances. Next, we eval-

ated the test-retest reliability and longitudinal consistency of some

op-performing workflows. Then, we assessed the performance of our

est-performing workflow in a clinical sample. We investigated the cor-

elations between delta and behavioral/cognitive measures in healthy

nd clinical cohorts and various factors affecting these correlations. We

lso compared our best-performing workflow with a publicly available
2 
odel, brainageR. Several follow-up analyses were performed to inves-

igate the effect of preprocessing (CAT vs. SPM) and tissue type (GM

s. GM + WM + CSF) choices on prediction performance. Finally, given

ecent evidence that lower accuracy models may capture atypical ag-

ng better ( Bashyam et al., 2020 ), we investigated relationship of model

erformance with delta and delta-behavior correlations. 

. Material and methods 

.1. Datasets 

.1.1. MRI data 

We used T1-weighted (T1w) magnetic resonance imaging (MRI)

ata from healthy subjects covering a wide age range (18–88 years,

raining data) from several large neuroimaging datasets ( Table 1 ),

ncluding the Cambridge center for Ageing and Neuroscience (Cam-

AN, N = 651) ( Taylor et al., 2017 ), Information eXtraction from Im-

ges (IXI, N = 562) ( https://brain-development.org/ixi-dataset/ ), the

nhanced Nathan Kline Institute-Rockland Sample (eNKI, N = 597)

 Nooner et al., 2012 ), the 1000 brains study (1000BRAINS; N = 1143)

 Caspers et al., 2014 ), Consortium for Reliability and Reproducibility

CoRR) ( Zuo et al., 2014 ), the Open Access Series of Imaging Studies

OASIS-3) ( LaMontagne et al., 2019 ), and the MyConnectome dataset

 Poldrack et al., 2015 ). The inclusion criteria were age between 18 and

0 years, gender data available, and no current or past known diag-

osis of neurological, psychiatric, or major medical conditions. The IXI

ataset was acquired from multiple sites; however, we treat it as a sin-

le dataset representing typical data acquired in a noisy clinical setting.

rom the OASIS-3 dataset, we selected scans from healthy control sub-

ects acquired on 3T scanners. Some other datasets used by brainageR

ere also used for a fair comparison with our best workflow. The cor-

esponding details are provided in the Supplementary Table S8. 

We used the Alzheimer’s Disease Neuroimaging Initiative (ADNI;

ttps://adni.loni.usc.edu/ ) database to evaluate the utility of brain-age

n neurodegenerative disorders ( Jack et al., 2008 ; Petersen et al., 2010 ).

e included 3T T1w images from healthy control (HC, N = 209), early

nd late mild cognitively impaired (EMCI, N = 237; LMCI, N = 128),

nd Alzheimer’s disease (AD, N = 125) subjects. For some of these sub-

ects, data were available for the second timepoint 1–2 years apart (HC,

 = 153; EMCI, N = 197; LMCI, N = 104; AD, N = 61) ( Table 1 d). 

.1.2. Non-imaging data 

We used various behavioral/cognitive measures to compute their

orrelations with delta. Fluid intelligence (FI; N = 631) assessed by the

attell Culture Fair test and reaction time for the motor learning task

 N = 302) from the CamCAN dataset ( Taylor et al., 2017 ). From the

NKI dataset, we used the Color-Word Interference Test (CWIT) inhi-

ition trial completion time ( N = 340), the Trail Making Test (TMT)

umber-letter switching condition completion time ( N = 344), Wech-

ler Abbreviated Scale of Intelligence (WASI-II) matrix reasoning scores

 N = 347), and WASI-II similarities scores ( N = 347) ( Nooner et al.,

012 ). 

Three cognitive tests from ADNI measuring disease severity were

sed; Mini-Mental State Examination (MMSE), Global Clinical Dementia

ating Scale (CDR), and Functional Assessment Questionnaire (FAQ). 

All the datasets except the 1000BRAINS data are available publicly.

thical approval and informed consent were obtained locally for each

tudy covering both participation and subsequent data sharing. The

thics proposals for the use and retrospective analyses of the datasets

ere approved by the Ethics Committee of the Medical Faculty at the

einrich-Heine-University Düsseldorf. 

.2. Data preparation 

For the main analysis all T1w images were preprocessed

sing the Computational Anatomy Toolbox (CAT) version 12.8

https://brain-development.org/ixi-dataset/
https://adni.loni.usc.edu/
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Table 1 

Sample characteristics of the datasets used in the current study. Datasets used a. for training within-dataset models. b. for training cross-dataset 

models. c. to evaluate test-retest reliability and longitudinal consistency of brain-age delta and comparison with brainageR (note: for CoRR 

full sample, the demographics are reported for the last iteration). d. to evaluate performance in clinical samples. Abbreviations: CamCAN: 

the Cambridge center for ageing and Neuroscience, IXI: Information eXtraction from Images (includes 1.5 and 3T scans), eNKI: the enhanced 

Nathan Kline Institute-Rockland Sample, CoRR: Consortium for Reliability and Reproducibility, OASIS-3: the Open Access Series of Imaging 

Studies, ADNI: the Alzheimer’s Disease Neuroimaging Initiative, HC: healthy control, EMCI and LMCI: early and late mild cognitively impaired, 

AD: Alzheimer’s disease. 

a. 

Train dataset No. of subjects (N) Males/Females Age range Mean ± S . D. Median 

CamCAN 651 321/330 18 - 88 54.27 ± 18.58 54.50 

IXI 562 249/313 20 - 86 48.70 ± 16.44 48.85 

eNKI 597 188/409 18 - 85 48.25 ± 18.51 50.00 

1000BRAINS 1143 660/513 22 - 85 61.85 ± 12.39 63.60 

b. 

Train dataset Train N Test dataset Test N 

IXI + eNKI + 1000BRAINS 2302 CamCAN 651 

CamCAN + eNKI + 1000BRAINS 2391 IXI 562 

IXI + CamCAN + 1000BRAINS 2356 eNKI 597 

IXI + CamCAN + eNKI 1810 1000BRAINS 1143 

IXI + CamCAN + eNKI + 1000BRAINS 2953 CoRR, OASIS-3, MyConnectome, ADNI See below (c & d) 

c. 

Dataset Data Filtering N (sessions) Males/Females Age Range Mean ± S . D. Median 

CoRR Retest < 3 months 86 (2) 39/47 20.0 - 84.0 48.82 ± 18.28 49.00 

Retest 1 – 2 years 95 (2) 52/43 18.0 - 88.0 34.43 ± 22.51 20.00 

Retest 2 – 3.25 years 26 (2) 18/8 18.0 - 57.0 28.09 ± 11.89 24.50 

Full sample 107 51/56 18.0 – 88.0 49.99 ± 18.87 50.00 

OASIS-3 Retest < 3 months 36 (2) 21/15 42.66 - 80.90 63.46 ± 8.80 62.93 

Retest 3- 4 years 127 (2) 52/75 46.04 - 86.21 65.59 ± 8.39 65.90 

Full sample 806 338/468 43.00 - 89.00 69.07 ± 9.06 69.00 

MyConnectome Retest < 3 years 1 (20) 1/0 45.39 - 48.02 45.73 ± 0.58 45.56 

d. 

Dataset Disease N Males/Females Age Range Mean ± S . D. Median 

ADNI (Timepoint-1) HC 209 99/110 56.3 - 94.7 75.67 ± 6.94 75.50 

EMCI 237 128/109 55.7 - 88.7 70.88 ± 7.12 70.40 

LMCI 128 62/65 55.1 - 91.5 72.02 ± 7.89 72.55 

AD 125 65/60 56.0 - 91.0 74.68 ± 7.99 75.40 

ADNI (Timepoint-2) HC 153 70/83 57.3 - 95.8 75.89 ± 6.63 75.50 

EMCI 197 108/89 56.7 - 90.4 71.81 ± 7.04 71.10 

LMCI 104 51/53 56.1 - 92.5 73.36 ± 7.92 73.95 

AD 61 32/29 57.0 - 93.0 75.79 ± 7.83 76.80 
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 Gaser et al., 2022 ). To ensure accurate normalization and seg-

entation, initial affine registration of T1w images was done with

igher than default accuracy (accstr = 0.8). After bias field correction

nd tissue class segmentation, accurate optimized Geodesic shooting

 Ashburner and Friston, 2011 ) was used for normalization (regstr = 1).

e used 1 mm Geodesic Shooting templates and outputted 1 mm

sotropic images. The normalized GM segments were then modulated

or linear and non-linear transformations. 

For comparison with the brainageR model, we used the seven

atasets used by brainageR (Table S8) and preprocessed them using

AT 12.8 (Section 2.9). To evaluate the effect of preprocessing and tis-

ue types, we used the SPM12 based preprocessing as implemented by

rainageR , which outputs three tissue segmentations (GM, WM, and

SF; see https://github.com/james-cole/brainageR/ ). 

.3. Workflows 

Each workflow consists of a feature representation and an ML algo-

ithm. We evaluated 128 workflows constituting 16 feature representa-

ions and eight ML algorithms. 
3 
.3.1. Feature representations 

The 16 feature representations were derived from the CAT-

reprocessed voxel-wise GM images. Using voxel-wise data can lead to

verfitting due to the curse of dimensionality owing to a large number

f features compared to the number of samples. Hence, we implemented

wo dimensionality reduction approaches previously used for brain-age

rediction. 

In the first strategy, we used voxel-wise GMV after smoothing and

esampling ( Franke et al., 2010 ), which may also improve the signal-to-

oise ratio. In the second strategy, we used an atlas to summarize data

rom distinct brain regions (called parcels). This resulted in 16 feature

epresentations. 

1. SX_RY: A whole-brain mask was used to select 238,955 voxels. Then,

smoothing (S) with an X mm FWHM Gaussian kernel and resam-

pling (R) using linear interpolation to Y mm spatial resolution were

applied with X = {0, 4, 8} and Y = {4, 8}, resulting in six feature

spaces (S0_R4, S0_R8, S4_R4, S4_R8, S8_R4, S8_R8; SX_R4: 29,852

voxels and SX_R8: 3747 voxels). 

2. SX_RY + PCA: Additionally, PCA ( Jolliffe, 2002 ) was applied to each

SX_RY feature space while retaining 100% variance, creating an-

https://github.com/james-cole/brainageR/


S. More, G. Antonopoulos, F. Hoffstaedter et al. NeuroImage 270 (2023) 119947 

Fig. 1. The framework to select the best-performing workflow for 

brain-age prediction. A total of 128 workflows were first evaluated 

for their within-dataset prediction performance using five-fold cross- 

validation (CV). Next, 32 workflows were selected based on the CV 

mean absolute error (MAE) and assessed for cross-dataset prediction 

performance. Within-dataset and cross-dataset evaluations were per- 

formed using four datasets (CamCAN, IXI, eNKI and 1000BRAINS). 

Then, 10 workflows out of 32 were selected based on their test MAE 

and assessed for test-retest reliability and longitudinal consistency us- 

ing OASIS-3 and CoRR datasets. The best-performing workflow was 

selected after considering all the evaluation criteria. 
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other six representations (S0_R4 + PCA, S0_R8 + PCA, S4_R4 + PCA,

S4_R8 + PCA, S8_R4 + PCA, S8_R8 + PCA). 

3. Parcel-wise: Four parcel-wise feature spaces were created by com-

bining cortical {100, 400, 800, 1200} parcels ( Schaefer et al.,

2018 ) with 36 subcortical ( Fan et al., 2016 ) and 37 cerebellum

( Buckner et al., 2011 ) parcels. We calculated the mean GMV of all

the voxels within each parcel (173, 473, 873, and 1273 features). 

.3.2. Machine learning algorithms 

We included eight ML algorithms covering diverse inductive biases:

idge regression (RR), least absolute shrinkage and selection operator

LASSO) regression (LR), elastic net regression (ENR), kernel ridge re-

ression (KRR), random forest regression (RFR), GPR, RVR with the

inear kernel (RVRlin), and polynomial kernel of degree 1 (RVRpoly).

hese algorithms have been previously used in the prediction of age and

ther behavior variables from neuroimaging data ( Franke et al., 2010 ;

aser et al., 2013 ; Su et al., 2013 ; Cole et al., 2015 ; Varikuti et al., 2018 ;

onsson et al., 2019 ; Liang et al., 2019 ; Zhao et al., 2019 ; He et al., 2020 ;

aecker et al., 2021 ; Boyle et al., 2021 ; Lee et al., 2021 ; Peng et al.,

021 ; Treder et al., 2021 ; Vidal-Pineiro et al., 2021 ; Beheshti et al.,

022 ; Cole, 2020 ) (Table S1). Details of these algorithms are provided

n the Supplementary Methods. 

Recently, deep-learning (DL) models have been applied for brain-

ge estimation with success ( Jiang et al., 2019 ; Jonsson et al., 2019 ;

eng et al., 2021 ). However, in this work, we focus on conventional

L models for the following reasons: (1) ML models have shown com-

etitive performance to DL models ( Cole et al., 2017 ; He et al., 2020 ;

chulz et al., 2020 ; Grinsztajn et al., 2022 ), and (2) the resources re-

uired for ML are more readily available and thus still enjoy wider ap-

licability with a lower computational footprint ( Thompson et al., 2020 ;

an Wynsberghe, 2021 ). 

.3.3. Learning setup and software 

The ML algorithm’s hyperparameters were estimated in a nested

ashion using an inner cross-validation (CV) ( Varoquaux et al., 2017 ).

efore training, features with low variance were removed (threshold <

e-5), and the remaining features were Z-scored to have zero mean and

nit variance. Any preprocessing steps, including PCA, were applied in

 CV-consistent fashion to avoid data leakage, i.e., the parameters were

stimated on the training set and applied to both the training and the

est set ( More et al., 2021 ). 
4 
All the workflows were implemented in Python version 3.9.1

sing the Julearn machine-learning library ( https://juaml.github.io/

ulearn/ ), which in turn uses the scikit-learn library for the learning al-

orithms KRR, GPR, and RFR ( http://scikit-learn.org/ ) ( Pedregosa et al.,

011 ). LR, RR, and ENR were implemented using the Python wrapper

or glmnet ( https://pypi.org/project/glmnet/ ) ( Friedman et al., 2010 ).

VRlin and RVRpoly were implemented using the scikit-rvm package

 https://github.com/JamesRitchie/scikit-rvm/ ). The codes used for pre-

rocessing, feature extraction, model training and prediction are avail-

ble at https://github.com/juaml/brainage _ estimation . 

.4. Analysis setup 

Given data acquisition and site-related biases, it is important to iden-

ify a workflow that shows high accuracy in different evaluation scenar-

os. For instance, a workflow that works well on a dataset might not

ork well on another dataset. To accommodate such real-world scenar-

os, we followed a systematic procedure where the workflows were sub-

ected to increasingly stringent evaluations ( Fig. 1 ). In brief, we first

valuated the within-dataset CV performance of the 128 workflows.

ext, 32 workflows characterizing the overall pattern of performance

ere selected for cross-dataset evaluation. This selection was performed

y uniformly sampling over the within-dataset CV performance. This al-

ows for the possibility that workflows with low within-dataset perfor-

ance might perform well in cross-dataset evaluation. Finally, the top

0 workflows out of the 32 were evaluated for their test-retest reliability

nd longitudinal consistency. After considering all the evaluation crite-

ia, the best-performing workflow was chosen and used for application

n ADNI data and comparison with brainageR. Specific analysis steps

re described below. 

.4.1. Within-dataset and cross-dataset evaluations 

We evaluated the 128 workflows (see Section 2.3 ) separately on four

atasets, CamCAN, IXI, eNKI, and 1000BRAINS. This scenario assumes

hat enough within-dataset training data are available and is widely

sed in brain-age estimation work ( Ashburner, 2007 ; Su et al., 2013 ;

utierrez Becker et al., 2018 ). To estimate a single out-of-sample brain-

ge for each subject, we used a 5-fold CV. For each hold-out (test) fold,

he remaining 80% of the data were used for training and to obtain a

eneralization estimate using 5 times repeated 5-fold (5 × 5-fold) nested

V. All CV analysis was stratified by age to preserve the age distribution.

t is important to obtain a single prediction per subject (as opposed to

https://juaml.github.io/julearn/
http://scikit-learn.org/
https://pypi.org/project/glmnet/
https://github.com/JamesRitchie/scikit-rvm/
https://github.com/juaml/brainage_estimation
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ultiple predictions per subject if the outer CV were repeated) for fur-

her meaningful analyses, such as correlation with non-imaging mea-

ures. Consequently, we computed two measures, test performance, and

V performance. The test performance was obtained by averaging over

he outer 5 folds. The CV performance was obtained by first averaging

ver the inner 5 × 5-fold CV and then over the outer 5-fold CV. Finally,

he CV and test performance were averaged over the four datasets. The

erformance was evaluated using mean absolute error (MAE), Pearson’s

orrelation between predicted and true (chronological) age, and the co-

fficient of determination R 

2 . 

We followed a systematic procedure to select a subset of workflows

hile maintaining diversity in terms of CV performance. Specifically,

he workflows were arranged in the increasing order of their average

V MAE and divided into 16 groups. Next, the top two workflows (with

he lowest CV MAE) from each group were selected. 

We tested these 32 selected workflows on cross-dataset to obtain

ample-unbiased performance. This emulates the real-world scenario

here data from the application site are not available, and the train-

ng and test data come from different sources with confounding effects,

uch as scanner hardware or operator inconsistencies ( Jovicich et al.,

006 ; Chen et al., 2014 ). Three out of four datasets (CamCAN, IXI, eNKI

nd 1000BRAINS) were pooled to form the training data, and the hold-

ut dataset was used as the test data. A 5 × 5-fold CV was performed

n the training data to estimate the generalization performance with

n internal CV for hyperparameter tuning. The CV performance was av-

raged over 5 × 5-fold CV and then over the four hold-out datasets.

he test performance was averaged over the four datasets. The perfor-

ance was again evaluated using MAE, Pearson’s correlation between

redicted and true age, and the coefficient of determination R 

2 . 

The 32 workflows were arranged in increasing order of their average

est MAE, i.e., their average performance on the hold-out datasets, from

hich the top 10 workflows were selected. 

.4.2. Test-retest reliability and longitudinal consistency 

We then trained models using the 10 selected workflows with

he four datasets combined as training data (IXI + eNKI + Cam-

AN + 1000BRAINS, N = 2953; Supplementary Fig. S1). The test-retest

eliability and longitudinal consistency of the delta were evaluated for

he 10 models using the OASIS-3 and CoRR datasets. 

To evaluate test-retest reliability, we used: two scans from the same

ubjects acquired within a delay of (1) less than three months (CoRR:

 = 86, age range = 20–84 years, OASIS-3: N = 36, age range = 43–

1), and (2) between 1 and 2 years (CoRR: N = 95, age range = 18–88).

he concordance correlation coefficient (CCC) ( Lin, 1989 ) between the

elta (predicted age minus age at the scan time) from the two scans was

alculated. 

To evaluate longitudinal consistency, two scans from the same sub-

ects acquired with a retest duration (1) between 2 and 3.25 years

CoRR: N = 26, age range = 18–57), and (2) between 3 and 4 years

OASIS-3: N = 127, age range = 46–86) were used. We computed Pear-

on’s correlation between the difference in the predicted age and the

ifference in chronological age from the two scans. A higher positive

orrelation here would indicate higher longitudinal consistency. 

By considering the results from the within- and cross-dataset anal-

sis, test-retest reliability, and longitudinal consistency, we chose one

est-performing workflow for further analysis. 

.5. Bias correction 

Many studies have reported age-dependency of the delta with over-

rediction in young subjects and under-prediction in older subjects

 Le et al., 2018 ; Liang et al., 2019 ), which renders the usage of delta

s an individualized biomarker problematic. A common practice is to

pply a statistical bias correction to remove the effect of age from ei-

her the predicted age or the delta ( Le et al., 2018 ; Liang et al., 2019 ;

mith et al., 2019 ; Cole, 2020 ; de Lange and Cole, 2020 ). Note that
5 
hen calculating correlations of delta with non-imaging measures, bias

orrection is expected to be similar to partial correlation analysis when

ge is used as a covariate. 

Several alternatives are available for bias correction ( de Lange

t al., 2019 ; Cole, 2020 ; de Lange and Cole, 2020 ; Smith et al.,

019 ( Beheshti et al., 2019 )). We chose the method used by Cole and col-

eagues ( Cole, 2020 ) as it does not use the chronological age of the test

ata, and thus avoids information leakage which can bias comparison

etween workflows by making low-performing workflows appear good

 de Lange et al., 2022 ). Furthermore, this method is relevant for possi-

le future applications like forensic investigations where test age is not

vailable. A linear regression model was fitted with the out-of-sample

from the CV) predicted age as the dependent variable and chronological

ge as the independent variable using the training data. The predicted

ge in the test set was corrected by subtracting the resulting intercept

nd dividing by the slope. 

.6. Correlation with cognitive measures 

To understand the effect of bias correction and the impact of co-

ariates on delta-behavior correlations, we performed correlations of

ehavior/cognitive measures from CamCAN and eNKI datasets (see

ection 2.1.2 ) with (1) uncorrected delta, (2) uncorrected delta with

ge as a covariate, (3) corrected delta, and (4) corrected delta with age

s a covariate. If the bias correction eliminates the antagonistic relation

etween delta and age, we expect (2), (3), and (4) to give similar corre-

ations. Furthermore, to assess the impact of data used for learning bias

orrection models, we performed these analyses using delta obtained

rom within-dataset and cross-dataset predictions. 

.7. Brain-age in clinical samples 

Next, we used the ADNI dataset ( Jack et al., 2008 ; Petersen et al.,

010 ) to validate our best-performing workflow on clinical samples. We

stimated and compared the delta between HC, EMCI, LMCI, and AD

ubjects ( Table 1 d). 

Our best-performing workflow trained on the four datasets was used

o obtain the predictions, followed by application of bias correction

odel (see Section 2.5 ). We compared two bias correction models, one

erived using the CV predictions from the four training datasets and an-

ther using HC samples in ADNI data ( Franke and Gaser, 2012 ). The

roup-wise corrected delta was compared using analysis of variance

ANOVA) followed by Bonferroni correction to counteract multiple com-

arisons. Emulating the scenario that application sites might have differ-

nt numbers of HC samples, we learned bias correction models using HC

ub-samples (0.1 to 0.9 fraction in steps of 0.1) drawn without replace-

ent and applied them on the full HC and AD samples. This process was

epeated 100 times to estimate the variance of mean corrected delta in

C and AD subjects. 

Finally, we investigated associations between the corrected delta and

hree clinical test scores, MMSE, CDR, and FAQ. The correlations were

omputed using the whole sample and different diagnostic groups sep-

rately using Pearson’s correlation with age as a covariate for both ses-

ions separately. 

.8. Relationship of MAE with delta and delta-behavior correlations 

Here, we sought to select a workflow that provides accurate and re-

iable predictions. We reason that a workflow that accurately predicts

he age of healthy individuals captures the typical brain aging process,

nd thus, a large delta in new data can be considered indicative of atyp-

cal aging. However, recent evidence shows that an overfitted brain-

ge model (high training accuracy) is not the most sensitive in iden-

ifying pathologies ( Bashyam et al., 2020 ). This study showed that a

elatively moderately fit model yielded brain-age deltas with more sig-



S. More, G. Antonopoulos, F. Hoffstaedter et al. NeuroImage 270 (2023) 119947 

Fig. 2. Within-dataset and cross-dataset results. a. The line plot showing CV MAE (averaged across four datasets) for 128 workflows arranged in increasing order 

(names of all workflows are given in Table S2). The orange bars represent the MAEs of 32 selected workflows with their names in the table on left. b. The scatter plot 

between the chronological age and within-dataset predicted age for the CamCAN data using S4_R4 + GPR workflow (MAE = 4.94 years and r = 0.94, p = 6.4e-309). 

c. The line plot showing test MAE (averaged across four runs) for the 32 workflows arranged in increasing order (names of all workflows are given in Table S3). The 

purple bars represent the MAEs of 10 selected workflows with their names in the table on the bottom right. d. The scatter plot between the chronological age and 

cross-dataset predicted age for the CamCAN data using S4_R4 + PCA + GPR workflow (MAE = 4.75 years and r = 0.95, p = 0.0e + 00). 
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ificant group differences and the larger effect sizes between control

nd disease groups in various brain pathologies. 

To investigate this possibility, we trained the 32 workflows selected

rom the cross-dataset analysis with four datasets pooled together for

raining and applied to timepoint 2 ADNI data. To understand how

he model performance varies with its utility, we compared the mod-

ls’ MAEs with the corrected mean delta in AD sample and examined

hether it was related to the delta-behavior correlations. We then per-

ormed a similar analysis in two HC samples (CamCAN and eNKI) using

orresponding within-dataset hold-out predictions. 

.9. Comparison with brainageR and effect of preprocessing and tissue 

ypes 

We compared the performance of our best-performing workflow

ith an already available brain-age estimation model, brainageR. The

rainageR model was trained on 3377 healthy individuals (age range =
8–92 years, mean ± SD age = 40.6 ± 21.4 years) from seven publicly

vailable datasets using the GPR algorithm. It uses SPM12 to segment

nd normalize T1w images, from which GM, WM, and CSF vectors were

xtracted (using 0.3 probability masked brainageR-specific templates).

CA was used to reduce data dimensionality, and 435 components ex-

laining 80% of the variance were retained. Note that brainageR uses

hree tissue types, while our focus is on GM. 

To avoid bias due to different training data, for this comparison we

sed data from the same subjects used by brainageR (2 subjects could

ot be processed; Table S8). Next, using this training data, we trained

ur best-performing workflow using GMV extracted from CAT 12.8 and

ompared the performance with already trained brainageR model on

hree datasets, (1) CoRR ( N = 107, sub-sampled to keep uniform dis-
6 
ribution in age-range = 18–88 years, repeated 100 times; see Supple-

entary Methods for more details), (2) the OASIS-3 ( N = 806; first scan

er subject, age-range = 43–89 years), and (3) the MyConnectome study

one subject scanned 20 times in a period of 3 years; age range = 45–

8 years). Additionally, we used sub-samples from OASIS-3 with test-

etest durations of (1) less than 3 months ( N = 36, 43–81 years) and

2) between 3 and 4 years ( N = 127, 46–86 years) to evaluate test-retest

eliability and longitudinal consistency, respectively (see Section 2.4.2 ).

Next, we compared how the preprocessing and tissue types af-

ect model performance. Following our focus on GMV, we compared;

1) CAT-preprocessed GMV, (2) SPM-preprocessed GMV, and (3) SPM-

reprocessed GM, WM, and CSF images following brainageR. The latter

nvestigates whether WM and CSF features provide complementary in-

ormation leading to better predictions. For this, we performed within-

ataset evaluation on IXI and CamCAN datasets (see Section 2.4.1 ). 

. Results 

.1. Within-dataset and cross-dataset predictions 

For within-dataset analysis, the CV performance (average over 125

stimates–inner 5 × 5-fold CV, repeated 5 times, see Section 2.4.1 ) and

est performance based on single prediction per subject from the outer

V, were calculated. These were then averaged separately over four

atasets. 

The average CV MAE (4.90–8.48 years) and the average test MAE

4.73–8.38 years) ( Fig. 2 a, Table S2) were similar, indicating that the

ested CV generalization estimates are indeed indicative of their test

erformance. The correlation between the true and predicted age on

he test data ranged from 0.81 to 0.93, while the age bias (correlation
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Table 2 

The performance metric for the best workflow on different datasets. A. Within-dataset prediction (using S4_R4 + GPR) b. Cross-dataset prediction (using 

S4_R4 + PCA + GPR). Abbreviations: MAE: mean absolute error between true and predicted age, MSE: mean squared error between true and predicted age, R 2 : the 

proportion of variance of predicted age explained by the independent variables in the model, Corr (true, pred): Pearson’s correlation between true and predicted 

age, Age bias: Pearson’s correlation between true age and brain-age delta. 

Datasets N a. Within-dataset results b. Cross-dataset results 

MAE MSE R 2 Corr (true, pred) Age bias MAE MSE R 2 Corr (true, pred) Age bias 

CamCAN 651 4.94 39.54 0.89 r = 0.94, p = 6.4e-309 r = − 0.42, p = 6.8e-29 4.75 38.35 0.89 r = 0.95, p = 0.0e + 00 r = − 0.23, p = 3.1e-09 

IXI 562 4.76 35.20 0.87 r = 0.93, p = 2.9e-252 r = − 0.48, p = 3.5e-33 6.08 57.35 0.79 r = 0.94, p = 1.2e-267 r = − 0.18, p = 2.2e-05 

eNKI 597 5.20 44.85 0.87 r = 0.93, p = 8.1e-267 r = − 0.47, p = 1.4e-33 4.97 39.65 0.88 r = 0.94, p = 9.7e-288 r = − 0.49, p = 3.6e-38 

1000- BRAINS 1143 4.04 26.65 0.83 r = 0.91, p = 0.0e + 00 r = − 0.50, p = 2.0e-73 5.13 41.03 0.73 r = 0.90, p = 0.0e + 00 r = − 0.15, p = 2.0e-07 

Table 3 

Concordance correlation coefficient (CCC) between brain-age delta from two sessions at different test-retest durations and their respective mean 

absolute error (MAE) between true and predicted age for CoRR and OASIS-3 datasets for the top 10 workflows. 

CoRR dataset OASIS-3 dataset 

Retest duration Age range (years) < 3 months ( N = 86; 20.0 - 84.0) 1 – 2 years ( N = 95; 18.0 - 88.0) < 3 months ( N = 36; 42.66 - 80.90) 

Workflows MAE (ses-1) MAE (ses-2) CCC MAE (ses-1) MAE (ses-2) CCC MAE (ses-1) MAE (ses-2) CCC 

S4_R4 + PCA + GPR 4.808 5.008 0.97 4.374 4.204 0.95 4.2 3.801 0.80 

S4_R4 + GPR 4.928 5.112 0.97 4.738 4.49 0.96 4.24 3.935 0.82 

S4_R4 + PCA + RVRlin 5.811 5.757 0.97 5.156 5.072 0.96 5.288 5.223 0.83 

S4_R4 + RVRlin 5.815 5.76 0.97 5.141 5.065 0.96 5.234 5.177 0.83 

S4_R8 + RVRlin 6.375 6.265 0.95 5.444 5.33 0.96 5.109 5.2 0.77 

S4_R4 + RR 5.64 5.653 0.98 5.174 5.277 0.97 4.918 4.71 0.85 

S4_R4 + PCA + RR 5.742 5.732 0.98 5.288 5.404 0.97 4.988 4.744 0.85 

S0_R4 + LR 6.281 6.359 0.96 6.251 6.293 0.94 4.949 5.161 0.86 

S4_R8 + LR 6.763 6.676 0.97 6.497 6.434 0.97 5.811 5.896 0.79 

S4_R8 + RR 6.232 6.185 0.97 5.975 6.016 0.97 5.332 5.328 0.81 
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etween true age and delta) ranged from − 0.22 to − 0.83 (Table S2).

verall, all workflows showed a high similarity in their predictions (cor-

elations 0.83–0.99 averaged across the four datasets; Fig. S2). The top

0 workflows showed comparable CV and test MAE with a difference of

ess than 0.4 years. 

Well-performing workflows primarily consisted of voxel-wise

moothed and resampled feature spaces with and without PCA, with

4_R4 (smoothed with a 4 mm FWHM kernel and resampled to 4 mm

patial resolution) generally performing better. Some workflows with

CA performed similarly to their respective non-PCA version but not all

see Supplementary Table S2). GPR, KRR, RR, and both RVR algorithms

enerally ranked high. Most algorithms performed worse with parcel-

ise features, while RFR generally exhibited the worst performance. 

The workflow S4_R4 + GPR performed the best (see Table 2 a for its

erformance on each of the four datasets). This workflow showed the

owest average CV MAE with a high R 

2 and a high correlation between

rue and predicted age ( Fig. 2 b) but a relatively high age bias (Fig. S3).

he second-best workflow, S4_R4 + PCA + GPR, performed similarly

o the best workflow. Other workflows with the S4_R4 feature space,

ith or without PCA, together with the KRR, RVRpoly, and RVRlin al-

orithms, performed comparably. From the 128 workflows, we selected

2 workflows while preserving diversity in terms of CV MAE. 

The 32 workflows selected for cross-dataset analysis showed the av-

rage CV (5 × 5-fold on training data) MAE (4.28–7.39 years) lower

han the test (hold-out dataset) MAE (5.23–8.98 years) ( Fig. 2 c). The

est-set correlation between true and predicted age ranged from 0.82

o 0.93, while the age bias ranged from − 0.27 to − 0.75 (Table S3). All

orkflows showed a high similarity in their predictions (correlations

.83–0.99 averaged across the four runs). Due to this high similarity,

he averaged predictions, i.e., ensemble, from 32 workflows were not

etter than the top-performing workflow (Fig. S2). The workflows that

erformed well within-dataset also performed well in cross-dataset pre-

ictions (Fig. S6). These results indicate that the corresponding models

ould generalize well to data from a new unseen site. 

We selected 10 workflows with the lowest test MAE for further

nalysis. These workflows consisted of only voxel-wise feature spaces
7 
S4_R4, S4_R8, and S0_R4) with and without PCA. The ML algorithms

ncluded GPR, RVRlin, RR, and LR. The best-performing workflow was

he S4_R4 + PCA + GPR with the lowest average test MAE, a high R 

2 , a

igh correlation between true and predicted age ( Fig. 2 d), and moderate

ge bias (Fig. S3), see Table 2 b for its performance on all four datasets),

ollowed by the S4_R4 + GPR workflow. 

.3. Test-retest reliability and longitudinal consistency 

The test-retest reliability and longitudinal consistency of the top 10

orkflows selected from the cross-dataset evaluation were evaluated

sing the CoRR and OASIS-3 datasets. 

For the short retest duration of less than three months, all 10 work-

ows showed high test-retest reliability (CoRR: CCC = 0.95–0.98, age

ange = 20–84 years; OASIS-3: CCC = 0.77–0.86, age range = 43–81

ears). For the longer retest duration of 1–2 years in the CoRR dataset,

CC ranged between 0.94–0.97 (age range = 18–88 years) ( Table 3 ).

hese results show that the age was reliably estimated by the selected

orkflows. 

Next, we evaluated the longitudinal consistency as the correlation

etween the difference in the predicted age and the difference in the

hronological age ( Fig. 3 , Table S4). Six workflows out of 10 showed a

ignificant positive linear relationship at the retest duration of 2–3.25

ears (r between 0.451–0.437, p < 0.05) in the CoRR dataset. These

orkflows included the S4_R4 feature space with and without PCA with

he GPR, RVRlin, and RR algorithms. In contrast, none of the workflows

howed a linear relationship in the OASIS-3 dataset (retest duration 3–4

ears). 

Although the workflows showed similar test-retest reliability and

ongitudinal consistency, the workflow S4_R4 + PCA + GPR showed the

owest MAE on these sub-samples ( Tables 3 , S4). Therefore, considering

ll the analysis scenarios, within-dataset, cross-dataset, test-retest reli-

bility, and longitudinal consistency, although other workflows were

lso competitive, we deemed the S4_R4 + PCA + GPR workflow as well-

erforming and chose it for further analysis. 
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Fig. 3. Longitudinal consistency. (top) The brain-age delta from two scans of the same subjects and (bottom) the scatter plot between the difference in chronological 

age and the difference in predicted age between two scans acquired within a retest duration of a. 2–3.25 years (CoRR dataset) b. 3–4 years (OASIS-3 dataset). 
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.4. Bias correction and correlation with behavioral/cognitive measures 

In the CamCAN data, FI was negatively correlated with age

 r = − 0.661, p = 1.92e-80), while motor learning reaction time was pos-

tively correlated with age ( r = 0.544, p = 1.11e-24). In the eNKI data,

WIT inhibition trial completion time ( r = 0.361, p = 6.50e-12) and TMT

umber-letter switching trial completion time ( r = 0.279, p = 1.45e-07)

ere positively correlated with age. On the other hand, WASI matrix

easoning scores were negatively correlated ( r = − 0.240, p = 6.03e-06),

nd WASI similarities scores were not correlated ( r = 0.052, p = 0.332)

ith age ( Table 4 ). 

As several ways have been proposed to obtain the correlation be-

ween delta and behavior, e.g., using bias-corrected delta or using age

s a covariate, we evaluated several alternatives (see Section 2.6 ). 

.4.1. Within-dataset predictions 

Within-dataset hold-out predictions, i.e., single prediction per sub-

ect, were derived using the chosen workflow (S4_R4 + PCA + GPR).

he bias correction model was estimated using the CV predictions on

he same dataset. In both datasets, there was no residual age bias af-

er bias correction: CamCAN, r = − 0.17, p = 1.13e-05 and r = 0.00,

 = 0.999; and eNKI, r = − 0.20 p = 4.53e-07 and r = 0.001, p = 0.986,

efore and after correction, respectively (Fig. S3). 

We first calculated the correlation between the uncorrected delta and

ehavioral measures using age as a covariate ( Table 4 a). In the Cam-

AN data, a higher delta was associated with lower FI ( r = − 0.154,

 = 0.0001) and higher motor learning reaction time ( r = 0.181,

 = 0.002). In the eNKI data, a higher delta was associated with lower re-

ponse inhibition and selective attention, as indicated by a higher CWIT

nhibition trial completion time ( r = 0.109, p = 0.045). There were no

orrelations between delta and intelligence scores (WASI matrix reason-
8 
ng and similarities). The results with age, age 2 , and gender as covariates

howed a similar trend (Table S5a). 

Next, we repeated this analysis with the corrected delta ( Table 4 a)

nd expected results similar to using uncorrected delta with age as a

ovariate. We indeed found similar correlations with FI ( r = − 0.157

 = 7.24e-05) and motor learning reaction time ( r = 0.186 p = 0.001)

n the CamCAN data, but no significant correlation with CWIT inhibi-

ion trial completion time ( r = 0.094, p = 0.084) in the eNKI data. The

orrelations using corrected delta with covariate were highly similar to

ncorrected delta with covariate ( Table 4 a). 

.4.2. Cross-dataset predictions 

Cross-dataset predictions were derived for the CamCAN and

NKI datasets using the S4_R4 + PCA + GPR workflow trained

n the IXI + eNKI + 1000BRAINS ( N = 2302) and IXI + Cam-

AN + 1000BRAINS ( N = 2356) datasets, respectively. 

In the CamCAN data, the bias correction model was successful with

ge bias before and after correction r = − 0.23, p = 3.06e-09 and

 = − 0.04, p = 0.263, respectively. However, the correction was not

uccessful in the eNKI data; the age bias was r = − 0.49, p = 3.62e-38

nd = − 0.35, p = 8.39e-19 before and after correction, respectively (Fig.

3). This result indicates that the bias correction might not always work

ell when applied to cross-dataset. 

Using age as a covariate on the uncorrected delta, we did not find

 significant delta-behavior correlation in the CamCAN data. In the

NKI data, a higher delta was associated with lower response inhibi-

ion and selective attention, as indicated by a higher CWIT inhibition

rial completion time ( r = 0.208, p = 0.0001) and lower cognitive flexi-

ility indicated by a higher TMT completion time ( r = 0.147, p = 0.006)

 Table 4 b). There were no correlations between delta and intelligence
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9 
cores (WASI matrix reasoning and similarities). The results with age,

ge 2 , and gender as covariates showed a similar trend (Table S5b). 

Since there was a residual correlation between corrected delta and

ge, the correlations with behavior without age as a covariate can be un-

eliable. We, therefore, do not discuss correlations of the corrected delta

ithout age as a covariate, but they are reported in Table 4 for complete-

ess. Additionally, as expected, the correlations using corrected delta

ith age as a covariate were similar to uncorrected delta with covariate

 Table 4 b). 

.5. Predictions in the ADNI sample 

At timepoint 1, the mean uncorrected delta was − 5.97 years in HC,

 4.39 in EMCI, − 3.57 in LMCI, and − 2.13 in AD ( Fig. 4 a). In other

ords, the model underestimated age. The slope and intercept derived

rom the bias correction model using the training data (CV predictions)

ould not entirely correct for the under-estimation and age bias ( Fig. 4 b).

ias correction using the whole ADNI HC sample removed the bias (aver-

ge delta, HC = 0, EMCI = 0.85, LMCI = 2.09, AD = 4.47 years) ( Fig. 4 c).

NOVA revealed that the corrected delta differed significantly across the

roups ( F = 12.94, p = 3.10e-08), and post-hoc t-tests revealed signifi-

ant differences between AD and HC ( p = 1.16e-08), EMCI ( p = 1.87e-

5), LMCI ( p = 0.043), and HC and LMCI ( p = 0.022) after Bonferroni

orrection. At timepoint 2, the pattern was similar to timepoint 1 but

ith higher corrected delta values (EMCI = 1.15 years, LMCI = 2.88,

D = 6.59 years) ( Fig. 4 e-f, Table 5 ). These results demonstrate that our

odel could capture the range of normal structural variation related to

ge in healthy subjects and deviance in both MCI and AD patients. 

The correlations between HC sample-corrected delta and various

linical test scores were calculated with age as a covariate ( Table 6 ). At

imepoint 1, the delta was negatively correlated with MMSE ( r = − 0.255,

 = 0.016) and positively correlated with FAQ ( r = 0.275, p = 0.005)

n the entire sample. No correlations were found in individual diagnos-

ic groups or could not be calculated due to insufficient score data. At

imepoint 2, the delta was negatively correlated with MMSE ( r = − 0.303,

 = 2.40e-12) and positively correlated with CDR ( r = 0.270, p = 7.35e-

0) and FAQ ( r = 0.331, p = 2.31e-14) in the whole sample. In the

D group, the delta was positively correlated with FAQ ( r = 0.298,

 = 0.021) but not with MMSE or CDR. In the LMCI group, the delta was

ositively correlated with FAQ ( r = 0.309, p = 0.002), negatively corre-

ated with MMSE ( r = − 0.227, p = 0.022), and not correlated with CDR.

n the EMCI group, the delta positively correlated with CDR ( r = 0.153,

 = 0.034) but not MMSE and FAQ scores. No correlations were found in

he HC group. The correlations with age, age 2 , and gender as covariates

ere similar (Table S6). 

We also found that the size of HC sample used for bias correction

onsiderably impacts the mean corrected delta in AD subjects (Fig. S7).

pecifically, with fewer HC subjects, the variance of the corrected delta

n AD was much higher in both sessions, e.g., at the timepoint 1 when

sing 21 HC samples, the mean AD delta ranged between ∼1–12 years

nd converged to 4.47 years as the sub-samples approached the com-

lete sample. 

.6. Relationship of MAE with delta and delta-behavior correlations 

Using 32 workflows selected from the cross-dataset evaluation, we

nalyzed whether model performance (MAE) was associated with their

rain-behavior correlations. The corrected mean delta in AD ranged

rom 5.43 to 10.01 years, with some relatively poor performing mod-

ls yielding a higher delta in AD (Table S7). Lower accuracy (higher

AE) was associated with stronger delta-MMSE correlation ( Fig. 5 c).

n contrast, lower MAE was associated with a stronger brain-behavior

orrelations in the two healthy samples, delta-motor learning reaction

ime in CamCAN, and delta-CWIT inhibition trial completion time in

NKI datasets ( Fig. 5 a & b). 
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Fig. 4. Brain-age delta in the clinical population. The box plot compares the delta between healthy control (HC), early mild cognitive impairment (EMCI), late mild 

cognitive impairment (LMCI), and Alzheimer’s disease (AD) from the ADNI sample at (left) timepoint-1 and (right) timepoint-2. Box plot with a & d. uncorrected 

delta. b & e. corrected delta using the CV predictions from the training set. c & f. corrected delta using the predictions from HC-ADNI subjects. 

Table 5 

Prediction performance on the ADNI data from two timepoints using the best-performing (S4_R4 + PCA + GPR) workflow. Abbreviations: HC: healthy control, EMCI 

and LMCI: early and late mild cognitive impairment, AD: Alzheimer’s disease. 

Time-point ADNI 

sample 

N MAE MSE Corr (true, pred) Mean 

delta 

Mean corrected delta 

(train samples) 

Mean corrected delta 

(ADNI-HC samples) 

1 HC 209 6.56 61.19 r = 0.76, p = 4.67e-40 − 5.97 − 5.18 0.00 

EMCI 237 5.76 52.30 r = 0.72, p = 1.07e-38 − 4.39 − 3.78 0.85 

LMCI 127 5.56 46.52 r = 0.75, p = 4.30e-24 − 3.57 − 2.86 2.09 

AD 125 5.18 44.29 r = 0.66, p = 5.00e-17 − 2.13 − 1.20 4.47 

2 HC 153 6.56 62.73 r = 0.73, p = 5.46e-27 − 6.05 − 5.27 0.00 

EMCI 197 5.57 50.82 r = 0.73, p = 1.23e-34 − 4.32 − 3.66 1.15 

LMCI 104 5.68 47.75 r = 0.72, p = 6.54e-18 − 3.25 − 2.44 2.88 

AD 61 5.31 44.12 r = 0.59, p = 6.09e-07 − 0.76 0.31 6.59 

10 
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Table 6 

Pearson’s correlation coefficients between corrected brain-age delta using S4_R4 + PCA + GPR workflow and cognitive measures (MMSE, CDR, and FAQ) using age 

as a covariate from the ADNI sample. The correlations were computed for the whole sample and each diagnostic group (HC, EMCI, LMCI and AD) separately from 

two timepoints. Abbreviations: MMSE: Mini-Mental State Examination, CDR: Global Clinical Dementia Rating Scale, FAQ: Functional Assessment Questionnaire; HC: 

healthy control, EMCI and LMCI: early and late mild cognitive impairment, AD: Alzheimer’s disease. 

Timepoint-1 Timepoint-2 

MMSE CDR FAQ MMSE CDR FAQ 

HC N = 68 N = 67 N = 74 N = 153 N = 147 N = 149 

r = − 0.202, p = 0.101 r = 0.025, p = 0.841 r = 0.153, p = 0.196 r = − 0.065, p = 0.427 r = − 0.019, p = 0.819 r = 0.070, p = 0.399 

EMCI N = 3 N = 3 N = 3 N = 196 N = 194 N = 193 

n.a. n.a. n.a. r = − 0.079, p = 0.272 r = 0.153, p = 0.034 r = 0.091, p = 0.211 

LMCI N = 2 N = 2 N = 2 N = 103 N = 102 N = 103 

n.a. n.a. n.a. r = − 0.227, p = 0.022 r = 0.115, p = 0.253 r = 0.309, p = 0.002 

AD N = 17 N = 17 N = 26 N = 61 N = 61 N = 61 

r = − 0.435, p = 0.092 r = 0.221, p = 0.412 r = 0.244, p = 0.240 r = − 0.186, p = 0.155 r = 0.218, p = 0.094 r = 0.298, p = 0.021 

Whole sample N = 90 N = 89 N = 105 N = 513 N = 504 N = 506 

r = − 0.255, p = 0.016 r = 0.114, p = 0.290 r = 0.275, p = 0.005 r = − 0.303, p = 2.40e-12 r = 0.270, p = 7.35e-10 r = 0.331, p = 2.31e-14 

Fig. 5. Correlation between MAE and delta-behavioral correlations obtained using 32 workflows a. CamCAN ( N = 302) b. eNKI ( N = 340) c. ADNI ( N = 61). For 

CamCAN and eNKI data, the within-dataset delta-behavior correlations with age as a covariate were used. For ADNI data, we used the delta-behavior correlations 

using corrected delta (corrected using the HC sample) with age as a covariate. 

11 
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Fig. 6. Comparison of our best workflow (S4_R4 + PCA + GPR) with the brainageR model on a. CoRR dataset (left) the box plot comparing predicted age from 

two models with true age using a sub-sample of 107 subjects, (center) the scatter plot between the chronological (true) age and predicted age, (right) the scatter 

plot between the chronological (true) age and brain-age delta. b. OASIS-3 dataset (for visual clarity, the box plot is created using a random sub-sample; N = 120) c. 

MyConnectome dataset (the red cross indicates the outlier scan that was removed from the analysis; final N = 19). d. Performance metrics for all datasets. For the 

CoRR dataset, the table shows average values from 100 iterations of sub-sampled data, but the plots are from one iteration. 
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.7. Comparison with brainageR and effect of preprocessing and tissue 

ypes 

Next, we compared the S4_R4 + PCA + GPR workflow and the

rainageR model both trained on the same data using the CoRR, OASIS-

, and MyConnectome datasets ( Fig. 6 ). 

In CoRR dataset, S4_R4 + PCA + GPR (mean MAE = 4.69, r = 0.947,

ias r = − 0.377) performed better than brainageR (mean MAE = 4.91,

 = 0.946, bias r = − 0.128) in MAE (paired t -test: t = − 8.04, p = 1.97e-

2) but brainageR showed a lower mean age bias (Steiger’s Z test

 Steiger, 1980 ) z = − 3.31, p = 0; Figs. 6 a & S8). There was no significant

ifference between the mean true and predicted age correlations from

wo models ( z = 0.133, p = 0.447). 

S4_R4 + PCA + GPR (MAE = 4.74, r = 0.836, bias r = − 0.092)

lso showed lower MAE than brainageR (MAE = 5.07, r = 0.805, bias

 = − 0.058) on the OASIS-3 dataset ( Fig. 6 b). The predicted ages (paired

 -test: t = − 1.37, p = 0.17) and the bias ( z = − 1.031, p = 0.151) of the

wo models were similar but the r value for our model was significantly

igher ( z = 3.101, p = 0.001). Test-retest reliability on a sub-sample

f the OASIS-3 dataset (retest duration < 3 months) was higher for

rainageR (CCC = 0.94 vs. 0.82 for S4_R4 + PCA + GPR). Both mod-

ls did not show longitudinal consistency at a retest duration of 3–4

ears. 

Additionally, S4_R4 + PCA + GPR workflow (MAE = 4.13) performed

ignificantly better than brainageR (MAE = 7.18) on the MyConnectome
12 
ataset (paired t -test: t = 9.60, p = 1.66e-08; Fig. 6 c). Note that one out-

ier scan (true age = 48) was excluded from this analysis (final N = 19).

To gain insight into the impact of preprocessing, we compared

ithin-dataset performance of our workflow using SPM preprocessing

n IXI and CamCAN datasets. On both datasets, CAT-derived GM fea-

ures performed better (IXI: MAE = 4.85 years; CamCAN: MAE = 5.01)

han SPM-derived GM features (IXI: MAE = 6.25; CamCAN: MAE = 5.82)

 Table 7 ). SPM-derived features from three tissue types performed better

IXI: MAE = 5.08; CamCAN: MAE = 4.88) than using only SPM-derived

M features, indicating that different tissue types carry complementary

nformation ( Table 7 ). 

. Discussion 

.1. Effect of feature space and ML algorithm 

The wide range of options available for designing brain-age estima-

ion workflows makes it challenging to disentangle the effect of feature

pace and ML algorithms. To this end, we investigated 128 workflows

onstituting combinations of 16 feature representations (voxel-wise and

arcel-wise) extracted from GMV images and eight ML algorithms. 

Previous studies have shown that the age prediction MAE ranges be-

ween ∼5–8 years for broad age range data (18–90 years) when using

MV features (Table S1). Our workflows showed performance in a sim-

lar range, with some of the workflows generalizing well to data from a
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Table 7 

Comparison of within-dataset performance between models trained with CAT-preprocessed GM features ( 𝑺 4 _ 𝑹 4 + 𝑷 𝑪 𝑨 + 𝑮 𝑷 𝑹 ; our framework), SPM- 

preprocessed GM features ( 𝑺 4 _ 𝑹 4 
𝑺 𝑷 𝑴 

+ 𝑷 𝑪 𝑨 + 𝑮 𝑷 𝑹 ) and SPM-preprocessed GM + WM + CSF features ( 𝑺 4 _ 𝑹 4 𝑾 𝑴 + 𝑪 𝑺 𝑭 
𝑺 𝑷 𝑴 

+ 𝑷 𝑪 𝑨 + 𝑮 𝑷 𝑹 ) on IXI and CamCAN data. 

Abbreviations: MAE: mean absolute error, MSE: mean squared error, Corr (true, pred): Pearson’s correlation between true age and predicted age, Age bias: Pearson’s 

correlation between true age and brain-age delta. 

Workflow MAE MSE Corr (true, pred) Age bias 

IXI ( N = 562) 𝑆4 _ 𝑅 4 + 𝑃𝐶𝐴 + 𝐺𝑃𝑅 4.85 36.89 r = 0.93, p = 1.03e-247 r = − 0.21, p = 7.39e-07 

𝑆4 _ 𝑅 4 
𝑆𝑃𝑀 

+ 𝑃𝐶𝐴 + 𝐺𝑃𝑅 6.25 62.34 r = 0.88, p = 1.15e-181 r = − 0.40, p = 1.61e-22 

𝑆4 _ 𝑅 4 𝑊 𝑀+ 𝐶𝑆𝐹 

𝑆𝑃𝑀 
+ 𝑃𝐶𝐴 + 𝐺𝑃𝑅 5.08 40.80 r = 0.92, p = 3.98e-234 r = − 0.27, p = 1.64e-10 

CamCAN ( N = 650) 𝑆4 _ 𝑅 4 + 𝑃𝐶𝐴 + 𝐺𝑃𝑅 5.01 40.89 r = 0.94, p = 6.45e-307 r = − 0.17, p = 1.14e-05 

𝑆4 _ 𝑅 4 
𝑆𝑃𝑀 

+ 𝑃𝐶𝐴 + 𝐺𝑃𝑅 5.82 56.83 r = 0.92, p = 3.87e-258 r = − 0.30, p = 2.66e-15 

𝑆4 _ 𝑅 4 𝑊 𝑀+ 𝐶𝑆𝐹 

𝑆𝑃𝑀 
+ 𝑃𝐶𝐴 + 𝐺𝑃𝑅 4.88 39.77 r = 0.94, p = 8.29e-308 r = − 0.25, p = 1.53e-10 
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ew site. Specifically, the MAE ranged between 4.90–8.48 years in CV

nd 4.73–8.38 years in test data for within-dataset analysis and for cross-

ataset analysis between 4.28–7.39 years and 5.23–8.98 years in CV

nd test data, respectively. The test MAE and R 

2 were highly correlated

or both within-dataset and cross-dataset analysis (Tables S2 & S3, Fig.

5). The workflows showed high positive correlations between chrono-

ogical age and predicted age for within-dataset (r between 0.81–0.93)

nd cross-dataset (r between 0.82–0.93) analyses. The workflows that

erformed well in within-dataset analysis also performed well in cross-

ataset analysis. The lower cross-dataset CV MAE (4.28–7.39 years)

ompared to within-dataset CV MAE (4.90–8.48 years) might be because

f the larger sample sizes in the cross-dataset analysis or possible over-

tting in smaller samples. This corroborates previous studies showing

ower errors with larger training sets ( Baecker et al., 2021 ; de Lange

t al., 2022 ), contrary to others that have shown a negative correla-

ion between sample size and CV performance estimates ( Wolfers et al.,

015 ; Varoquaux, 2018 ). The age range of the training and test data

ffects the performance estimates. Specifically, when using a narrow

ge range, performance metrics such as MAE and RMSE are usually bet-

er than broad age range evaluations ( Cole, 2020 ; Peng et al., 2021 ;

e Lange et al., 2022 ). However, the lower errors and hence smaller

rain-age delta values in those cases are not necessarily due to better

odel performance but rather because the predictions are closer to the

ean age of the group. Here, our focus was on broad age range mod-

ls, and the errors we obtained are within the range of what has been

reviously shown. 

Our results showed that the choice of feature space and the ML al-

orithm both affect the prediction error. In general, feature spaces de-

ived from voxel-wise GMV such as S4_R4, S4_R8, and S0_R4 in combina-

ion with GPR, KRR, RVRpoly, and RVRlin algorithms performed well in

he within-dataset analysis. The results were similar with PCA retaining

00% variance for some workflows but not all, especially the regularized

odels (LR and ENR) showed lower performance after PCA (see Supple-

entary Table S2). This might be because of the different biases of ML

lgorithms, e.g., due to regularization. It is possible that the sparsity-

nducing penalization in addition to PCA leads to lower accuracy mod-

ls. Some of these selected workflows also performed well on cross-

ataset analysis. Specifically, the voxel-wise GMV features smoothed

ith a 4 mm FWHM kernel and resampled to a spatial resolution of

 mm, without and with PCA (S4_R4 and S4_R4 + PCA) together with

he GPR algorithm performed best in both the within-dataset and cross-

ataset analyses. A previous study has reported a voxel size of 3.73 mm 

3 

nd a smoothing kernel of 3.68 mm as the optimal parameters for pro-

essing GM images for brain-age prediction with a performance similar

o our workflows ( Lancaster et al., 2018 ). In general, parcel-wise fea-

ures performed worse than voxel-wise features irrespective of the ML

lgorithm used, suggesting that the GMV summarized from parcels leads

o a loss of age-related information. Our results align with a recent study

omparing several ML models (GPR-dot product kernel, RVR-linear ker-

el, and SVR-linear kernel) trained on region-based and voxel-based

eatures with or without PCA on a narrower age range (47–73 years)

 Baecker et al., 2021 ). They found minimal differences in performance
 o  

13 
ue to the ML algorithms with voxel-based features performing better

han region-based features. 

Our results also indicate that the non-linear algorithm (GPR with RBF

ernel) and the kernel-based algorithms (KRR and RVR) outperformed

inear algorithms such as RR and LR. Surprisingly, the non-linear RFR

lgorithm performed the worst irrespective of the feature space used

Fig. S4). This suggests that capturing distributional information using

he RBF kernel, as we did using GPR, and use of kernels that capture the

imilarity between the GMV features in an invariant manner (e.g., Pear-

on correlation) is beneficial. These results corroborate a recent study

hat comprehensively evaluated 22 regression algorithms (test MAE be-

ween 4.63–7.14 years) in broad age range data (18–94 years) using

MV features and found SVR, KRR, and GPR with a diverse set of ker-

els to perform well ( Beheshti et al., 2022 ). 

In sum, the smoothed and resampled voxel-wise data (such as S4_R4,

4_R8) with either a non-linear or a kernel-based algorithm (GPR with

BF kernel, KRR with polynomial kernel degree (1 or 2), and RVR with

inear and polynomial degree 1 kernels) are well suited for brain-age

stimation. Sometimes, especially with a large number of features, PCA

ight help improve performance ( Franke et al., 2010 ; Baecker et al.,

021 ). However, we found the performance of these workflows with

nd without PCA to be similar. Therefore, one could use the features

irectly for immediate interpretability of the models; on the other hand,

f computation is a constraint, then the PCA retaining 100% variance

ould be used without affecting the performance. 

Future studies can investigate options to improve model generaliz-

bility, such as data harmonization to remove site effects and considera-

ions for population structure (e.g., over-representative of the Caucasian

opulation in the datasets used). 

.2. Test-retest reliability and longitudinal consistency 

The brain-age estimates must be reliable within a subject. We found

he delta to be reliable over a short scan delay (CoRR: CCC = 0.95–0.98,

ge range = 20–84; OASIS-3: CCC = 0.76–0.85, age range = 43–80).

he reliability of delta within a short scan duration has been reported

n previous studies. For example, one study showed an intraclass

orrelation coefficient (ICC) of 0.96 between deltas from subjects

canned an average of 28.35 ± 1.09 days apart ( N = 20, mean age at

rst scan = 34.05 ± 8.71) ( Cole et al., 2017 ). Another study showed

n ICC of 0.93 in young adults from the OASIS-3 dataset ( N = 20,

ge range = 19–34) scanned within a short delay of less than 90 days

 Franke and Gaser 2012 ). Another study found an ICC of 0.81 with a

ean interval of 79 days between scans ( N = 20, chronological age = 45

ears) ( Elliott et al., 2021 ). 

Longitudinal consistency, i.e., chronologically proportionate in-

rease in predicted age, is crucial for real-world application. Previous

tudies have shown lifestyle interventions, such as meditation and ex-

rcise ( Luders et al., 2016 ; Steffener et al., 2016 ), can have positive

ffects on brain-age, while factors such as smoking and alcohol intake

an have adverse effects ( Bittner et al., 2021 ). For instance, 18 months

f lifestyle intervention, including diet change and physical activity,
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howed attenuated brain-age in a longitudinal sample which correlated

ith improvement in several physiological measures ( Levakov et al.,

022 ).Thus, lifestyle can lead to different longitudinal brain-age trajec-

ories. However, in our analyses, we assumed that there were no such

nterventions over the retest duration as the datasets did not provide

uch information. With this assumption, we expected brain-age to in-

rease proportionally with chronological age. 

In support of this assumption, we found a positive linear relationship

etween the difference in predicted age and the difference in chronolog-

cal age at a retest duration of 2–3.25 years ( N = 26; r = 0.447, p = 0.022)

n the CoRR dataset. However, there was no correlation in the OASIS-

 dataset with a retest duration of 3–4 years ( N = 127; r = − 0.008,

 = 0.932). Thus, the evidence of longitudinal consistency was weak.

his can be speculatively explained by the maximum test-retest dura-

ion of 3–4 years which lies within the range of the MAE for the OASIS-3

ataset (MAE session-1: 5.08 and session-2: 5.86 years, Table S4). Taken

ogether, the high reliability supports the use of brain-age in clinical set-

ings; however, further evaluations are needed to establish longitudinal

onsistency. 

.3. Effect of bias correction 

Most brain-age estimation workflows produce biased results, i.e.,

verestimation at younger ages and underestimation at older ages

 Liang et al., 2019 ). Therefore, correcting this age bias is important to

acilitate individual-level decisions. Here, we adopted a bias correction

odel that does not use the chronological age of test samples for cor-

ection ( Cole, 2020 ), as using chronological age can hamper fair com-

arison between workflows ( de Lange et al., 2022 ). 

The tested workflows generally showed negative associations be-

ween chronological age and delta for both within-dataset (r between

 0.22 to − 0.83) and cross-dataset (r between − 0.27 to − 0.75) predic-

ions. However, this age bias was less pronounced in more accurate mod-

ls (Fig. S5). This result is in line with the previous work ( de Lange et al.,

022 ) that showed that if input features are not informative enough

o predict age, predictions will be closer to the median or mean age,

eading to this bias. Additionally, we found that the data used to esti-

ate the bias correction models can significantly impact the corrected

elta. Specifically, within-dataset-derived models corrected the age bias

ore adequately than cross-dataset models (Fig. S3). This discrepancy

ight be due to the difference in data properties, e.g., scanner-specific

diosyncrasy, between the training and the out-of-site test data. Our re-

ults suggest that a bias correction model might not always work well

hen applied to a new site, even when the training data itself consists

f multiple sites. Consequently, using part of the test data to correct the

ge bias in the remaining test data works well (as seen in the ADNI data

nalysis, Section 3.5 ). However, this might not be feasible when the test

ample is small or in the extreme case, a single test subject is available.

How much data is needed for learning a bias correction model is

n important but unexplored question. We investigated this by learn-

ng bias correction models from sub-samples of the HC subjects from

DNI data. Smaller samples led to higher variance in the efficacy of

ias correction models when applied to AD patients ( Varoquaux, 2018 ).

or instance, at the smallest sample size ( N = 21), the average corrected

elta of the AD patients varied from 1 to 12 years (Fig. S7, ADNI time-

oint 1). It is likely that different studies use different samples for bias

orrection, so the results should be interpreted and compared with cau-

ion. This result shows the importance of using large samples for bias

orrection and emphasizes careful analysis and reporting of the results.

.4. Correlation with behavior 

Using the selected workflow we observed that the correlation of delta

ith behavioral measures is sensitive to whether the delta was adjusted

or age, either via bias correction or using it as a covariate. For instance,
14 
he uncorrected delta was not correlated with FI and motor learning re-

ction time (in CamCAN data) or CWIT inhibition trial completion time

in eNKI data); however, significant correlations were obtained using

ge-adjusted delta ( Table 4 ). Thus, it is important to control for age

hen analyzing correlations between delta and behavioral measures. 

Using out-of-sample predictions from within-dataset analysis, we

ound that a higher uncorrected delta (with age as a covariate) was as-

ociated with lower FI, higher motor learning reaction time (from Cam-

AN data), and lower response inhibition and selective attention, indi-

ated by higher CWIT inhibition trial completion time (from eNKI data).

e expected these correlations to be similar to correlations calculated

sing corrected delta ( de Lange and Cole, 2020 ), as there was no signif-

cant age bias. In the CamCAN data, the behavioral correlations using

ncorrected delta with age as a covariate and corrected delta were quite

imilar (FI: r = − 0.154, p = 0.0001 vs. r = − 0.157, p = 7.24e-05; motor

earning reaction time: r = 0.181, p = 0.002 vs. r = 0.186, p = 0.001).

owever, the correlation of CWIT inhibition trial completion time with

ncorrected delta with age as a covariate was significant but not when

sing the corrected delta ( r = 0.109, p = 0.045 vs. r = 0.094, p = 0.084).

his slight difference could potentially be explained by the small effect

ize and differences inherent in the two methods used for correction. 

We also found that there was disagreement between delta-behavior

orrelations from within-dataset and cross-dataset predictions with age

s a covariate. For instance, CamCAN showed significant correlations

ith FI and motor learning reaction time with within-dataset delta but

ot with cross-dataset delta. On the other hand, eNKI showed signifi-

ant correlations only with CWIT inhibition trial completion time us-

ng within-dataset delta, but a significant correlation with TMT com-

letion time was found using cross-dataset delta. These results indicate

hat the subtle differences in predictions can impact behavioral corre-

ations, even though the two predictions were highly correlated (Cam-

AN: r = 0.961, eNKI: r = 0.962; Fig. S6). Thus, the delta-behavior cor-

elations, whether using within-dataset or cross-dataset delta, should be

nterpreted with caution. 

Taken together, within-dataset data yields better bias correction

odels, as we observed in two scenarios, behavioral correlations and

elta estimation. However, when enough data are not available, the re-

ulting models may fail to correct the age bias, leading to high variability

n the mean delta (Fig. S7). We therefore caution the practitioners and

ecommend carefully assessing bias correction models, e.g., using boot-

trap analysis, before application. We observed that subtle differences in

redicted age (within-dataset vs. cross-dataset) lead to different behav-

oral correlations, which can question the impact of the workflow used

or prediction, the analysis method used for computing behavioral cor-

elation (corrected delta versus covariates) and their interaction. Future

tudies should focus on disentangling such intricacies before applying

he brain-age paradigm in practice. 

.5. Higher brain-age delta in neurodegenerative disorders 

Neurodegenerative disorders such as AD, MCI, and Parkinson’s dis-

ase (PD) are accompanied by brain atrophy. Many studies have shown

 decrease in global and local GMV in MCI and AD ( Good et al., 2001 ;

aras et al., 2004 ; Fjell et al., 2014 ) and also in a broad range of neu-

opsychiatric disorders ( Kaufmann et al., 2019 ). Consequently, an in-

reased delta, i.e., older appearing brains, has been reported in patients

ith MCI (3–8 years) and AD ( ∼10 years) ( Franke and Gaser 2012 ;

aser et al., 2013 ; Varikuti et al., 2018 ). We assessed the delta in HC,

MCI, LMCI, and AD patients by applying our best-performing workflow

ollowed by a bias correction model estimated on HC. We found that

rain aging is advanced by ∼4.5–7 years in AD, ∼2–3 years in LMCI,

nd ∼1 year in EMCI (timepoint 1-timepoint 2; Table 5 ). Furthermore,

he delta was correlated with measures associated with disease severity

nd cognitive impairment in MCI and AD patients. Thus, in line with

revious studies, brain-age delta confirmed its potential to indicate ac-

elerated brain aging in neurodegenerative diseases based on structural
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RI data ( Franke and Gaser, 2012 ; Varikuti et al., 2018 ; Cole et al.,

020 ; Eickhoff et al., 2021 ; Lee et al., 2021 ). 

We also show that different workflows can lead to different delta

stimates in AD and, consequently, different correlations with cognitive

easures (Table S7). In addition, the mean corrected delta in the patient

roup depends on the type (within-dataset or cross-dataset) and size of

ample used for bias correction (Figure S7). Thus, the results should be

nterpreted with caution when comparing different studies. 

.6. Relationship of MAE with delta and delta-behavior correlations 

The utility of age prediction models lies in their application to cap-

ure atypical aging. However, to achieve this, it is imperative to min-

mize the methodological variance, due to decisions in feature space

nd ML algorithms, by building accurate models so that the resulting

rain-age delta captures biological variance. A recent study has shown

hat delta from overfitted models (i.e., with higher training accuracy)

esults in smaller differences in AD vs. CN, while delta from a model

ith comparatively lower (training) accuracy captures biological vari-

nce ( Bashyam et al., 2020 ). However, our analyses and model selection

as based on nested cross-validation. Therefore, our accurate models

annot be considered overfitted. 

In healthy samples, higher accuracy (lower MAE) was associated

ith higher delta-motor learning reaction time (CamCAN) and delta-

WIT inhibition trial completion time (eNKI) associations. In contrast,

n AD patients, models with lower accuracy (higher MAE) showed a

tronger delta-MMSE correlation. This observation that some less accu-

ate models can better capture the delta-behavioral correlation better

n AD is in line with a previous study ( Bashyam et al., 2020 ) ( Fig. 5

nd Table S7). These contrasting observations in healthy and patient

ohorts make it difficult to develop a model selection strategy based on

elta-behavioral correlations. 

The corrected mean delta in AD (corrected using the CN sample,

ndicative of separation between CN and AD), for the 32 workflows

anged from 5.43 to 10.01 years. Some moderately accurate models,

.g., S0_R4 + LR (delta = 7.27, MAE = 5.91 years), showed a high delta

or AD and a strong correlation with AD scales (Table S7). However,

he model with the highest delta (173 + RFR: delta = 10.01, MAE:

.07 years) showed a comparatively weaker correlation with behav-

or. Moreover, similarly performing models (S0_R4 + LR: delta = 7.27,

AE = 5.91 years vs. S8_R4 + KRR: delta = 7.17, MAE = 6.59 years)

howed quite different correlation with behavior. This indicates a non-

inear relationship between the models’ MAEs, deltas, and behavioral

orrelations. 

Based on these results, we speculate that perhaps using adequately

egularized models in the patient population can be beneficial even if

hey show a lower accuracy. It might be possible that regularization

ushes the models to focus on fewer specific features containing typical

ging-related signal. This in turn could lead to lower accuracy models

as it downweighs some features) but also leads to delta estimates that

re more informative of atypical aging. 

Taken together, comparing models based on their performance on

atient data and delta-behavior correlations is a promising but open

opic. In particular, it is unclear which delta-behavioral correlation to

se, and generalizability of models across behavioral scores, samples,

nd disorders remains unknown. Further studies are needed to define

ppropriate procedures for model selection based on such criteria. 

.7. Comparison with brainageR and effect of preprocessing and tissue 

ypes 

Using the same training data as brainageR, our workflow outper-

ormed brainageR in terms of MAE in three datasets; CoRR ( N = 107;

ean MAE = 4.69 vs. 4.91), OASIS-3 ( N = 806; MAE = 4.74 vs. 5.07),

nd MyConnectome (N = 19; MAE = 4.13 vs. 7.18). However, the bias of

ur model was similar or higher than that of brainageR and its test-retest
15 
eliability was lower (OASIS-3, N = 36; CCC = 0.82 vs. CCC = 0.94).

verall, our workflow showed lower MAE, higher correlation between

rue and predicted age but also higher age bias compared to brainageR.

hese differences are likely driven by differences in preprocessing, and

he use of three tissue types by brainageR as opposed to us using only

M. To investigate this further, we performed two additional analyses. 

Different VBM tools can provide different GMV estimates, in-

uencing the estimated association with age ( Tavares et al., 2019 ;

ntonopoulos et al., 2023 ). The CAT-derived GMV features performed

etter than SPM preprocessing (both with S4_R4 + PCA for feature ex-

raction together with the GPR algorithm for learning) in terms of MAE

e.g., IXI: MAE = 4.85 vs. 6.25), the correlation between true and pre-

icted age ( r = 0.93 vs. 0.88, p < 1e-6 both) and age bias ( r = − 0.21 vs.

 = − 0.40, p < 1e-6 both) ( Table 7 ). We further found that the predictions

hen using three tissue types from SPM (GM, WM, and CSF) were better

IXI: MAE = 5.08, r = 0.92, p < 1e-6, bias: r = − 0.27, p < 1e-6). This is

n line with a previous study that showed a slight performance improve-

ent when using both GM and WM compared to only GM ( Cole et al.,

017 ). Features from different tissue types may carry complementary

nformation regarding age, providing better predictions and lower age

ias. Many previous studies have used GM and WM together as features

 Franke and Gaser, 2012 ; Cole et al., 2017 ; Cole et al., 2018 , 2020 ), and

thers have used all three tissue types ( Monté-Rubio et al., 2018 ; Xifra-

orxas et al., 2021 ; Hobday et al., 2022 ). CAT-derived GMV performed

imilarly to SPM-derived three tissue types with slightly lower age bias

or the former ( Table 7 ), showing the suitability of GM for this task fol-

owing its clinical relevance in neurodegenerative disorders ( Karas et al.,

004 ; Wu et al., 2021 ). Further studies are needed to cleanly disentangle

he effect of tissue types on different performance criteria investigated

ere. 

. Conclusion 

Numerous choices exist for designing a workflow for age prediction.

he systematic evaluation of different workflows on the same data in

ifferent scenarios (within-dataset, cross-dataset, test-retest reliability,

nd longitudinal consistency) revealed a substantial impact of feature

epresentation and ML algorithm choices. Notably, voxel-wise GM fea-

ures, especially smoothed with a 4 mm FWHM kernel and resampled to

 spatial resolution of 4 mm (S4_R4), were better than parcel-wise fea-

ures. Additionally, performing PCA did not affect the prediction perfor-

ance, but it can help reduce computational resources. ML algorithms,

ncluding Gaussian process regression with the radial basis kernel, ker-

el ridge regression with polynomial kernel degree 1 or 2, and rele-

ance vector machine with linear and polynomial degree 1 kernels, per-

ormed well. Overall, some workflows performed well on out-of-site data

nd showed high test-retest reliability but only moderate longitudinal

eliability. Consistent with the literature, we found a higher delta in

lzheimer’s and mild cognitive impairment patients after correcting the

elta with a large sample of controls. Our results provide evidence for

he potential future application of delta as a biomarker but also caution

egarding analysis setup and data used for behavioral correlations and

ias correction. Findings from the current study can serve as guidelines

or future brain-age prediction studies. 
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